

Home Search Collections Journals About Contact us My IOPscience

X-dependent electronic structure of $YbXCu_4$ (X = In, Cd, Mg) investigated by high-resolution photoemission spectroscopy

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys.: Condens. Matter 14 4445 (http://iopscience.iop.org/0953-8984/14/17/316) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.104 The article was downloaded on 18/05/2010 at 06:33

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 14 (2002) 4445-4459

X-dependent electronic structure of $YbXCu_4$ (X = In, Cd, Mg) investigated by high-resolution photoemission spectroscopy

H Sato^{1,5}, K Hiraoka², M Taniguchi^{1,3}, Y Nishikawa¹, F Nagasaki¹, H Fujino¹, Y Takeda^{1,6}, M Arita³, K Shimada³, H Namatame³, A Kimura¹ and K Kojima⁴

¹ Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1,

Higashi-Hiroshima 739-8526, Japan

² Faculty of Engineering, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan

³ Hiroshima Synchrotron Radiation Centre, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-8526, Japan

⁴ Faculty of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan

E-mail: jinjin@hiroshima-u.ac.jp

Received 28 January 2002 Published 18 April 2002 Online at stacks.iop.org/JPhysCM/14/4445

Abstract

Valence-band electronic structure of $YbXCu_4$ (X = In, Cd, Mg) has been investigated by means of high-energy-resolution photoemission spectroscopy with an He I resonance line ($h\nu = 21.22 \text{ eV}$) from 10 to 300 K. In the photoemission spectra of YbInCu₄ and YbCdCu₄ near the Fermi level (E_F) measured at 10 K, the prominent peak structures due to the Yb²⁺ $4f_{7/2}$ states are clearly observed at 46 and 31 meV, respectively. The difference of the peak energies qualitatively reflects that of the Kondo temperatures between YbInCu₄ and YbCdCu₄. The peak intensities increase gradually with decreasing temperature for both compounds. The amount of enhancement of the Yb²⁺ $4f_{7/2}$ peak from 50 to 10 K is, however, much stronger for YbInCu₄ than for YbCdCu₄, due to an increase of the Yb²⁺ component followed by the valence transition at $T_v = 42$ K in YbInCu₄. On the other hand, the Yb²⁺ $4f_{7/2}$ states of YbMgCu₄ is observed as a broad structure near E_F in the photoemission spectrum at 10 K. We have also measured the x-ray photoemission spectra in the Yb 4d core state region of YbXCu₄ from 10 to 300 K. For YbInCu₄ and YbCdCu₄, the structures due to the Yb²⁺ and Yb³⁺ components are recognized for all temperatures. In particular, the Yb²⁺ structure is still observed at 300 K for YbInCu₄. The intensity ratio of Yb²⁺/Yb³⁺ increases gradually with decreasing temperature for both compounds. For YbMgCu₄, on the other hand, almost only Yb²⁺ structures are observed and little temperature dependence is detected.

⁵ Author to whom any correspondence should be addressed.

⁶ Present address: Hiroshima Synchrotron Radiation Centre, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-8526, Japan.

1. Introduction

The ternary compounds YbXCu₄ (X = In, Ag, Au, Pd, Cd, Mg, Tl, Zn) with a cubic *C*15*b*-type structure exhibit a wide variety of physical properties [1, 2]. YbAgCu₄ is a prototype heavy-fermion compound with γ above 200 mJ mol⁻¹ K⁻² with no magnetic ordering, where γ is a linear specific coefficient. YbCdCu₄ and YbZnCu₄ also exhibit heavy-fermion behaviour with γ of 175 and 230 mJ mol⁻¹ K⁻², respectively. On the other hand, YbAuCu₄ orders magnetically below 1 K, and the low-temperature properties are dominated by Ruderman–Kittel–Kasuya–Yoshida interactions and crystal field effects. YbPdCu₄ also orders magnetically below 1 K.

Among these ternary compounds, YbInCu₄ has, in particular, attracted the greatest interest and been most extensively studied so far. This compound exhibits a first-order isostructural valence transition at $T_v = 42$ K [3–5]. At high temperature, Yb is nearly trivalent, displaying Curie–Weiss susceptibility with paramagnetic moment near the free-ion value of 4.5 μ_B . At T_v , the Yb valence is reduced to 2.8 and the magnetic susceptibility shows a temperatureindependent Pauli paramagnetism. The lattice volume changes by 0.5% at the transition, but there is no change in the cubic C15b crystal symmetry. Such an 'isomorphic' valence transition is fundamentally similar to the $\alpha - \gamma$ transition in Ce [6,7]. Furthermore, the Kondo temperature changes from $T_{K+} \sim 25$ K at high temperature to $T_{K-} \sim 400$ K at low temperature [8]. The mechanism of the valence transition has not been clearly revealed yet and is still under investigation [9].

The direct investigation of the electronic structure, in particular the Yb 4f states of YbInCu₄, has been carried out extensively by means of temperature-dependent photoemission spectroscopy using synchrotron radiation [10–14]. Reinert et al [12] reported a detailed temperature dependence of a peak intensity of the Yb²⁺ $4f_{7/2}$ states near the Fermi level (E_F). The peak intensity does not show a critical change at the valence transition and increases continuously with decreasing temperature even through T_v . The authors proposed that the subsurface zone is important for YbInCu₄. On the other hand, Moore et al [14] reported that the peak intensities of the Yb²⁺ $4f_{7/2}$ and $4f_{5/2}$ states show a critical change just corresponding to the valence transition. However, there are still some controversies on the analyses and explanations of the photoemission results for YbInCu₄ [15, 16]. As concerns YbAgCu₄, YbAuCu₄ and YbPdCu₄, their photoemission spectra using an Al K α line have been compared at 110 K with the experimental energy resolution of ~ 1.2 eV [17]. Weibel *et al* [18] have also measured the photoemission spectra of YbAgCu₄ using the He resonance lines from 20 to 260 K with the resolution below 25 meV. For YbCdCu₄, YbMgCu₄, YbZnCu₄ and YbTlCu₄, added as new members of this family recently [1, 2, 19], the photoemission experiments have not been carried out so far.

The purpose of the present study is to investigate the X dependence of electronic structure of YbXCu₄. We report the valence-band electronic structure near E_F as well as in the wide binding-energy region of YbInCu₄, YbCdCu₄ and YbMgCu₄ by means of the high-energyresolution ultraviolet photoemission spectroscopy in the temperature region from 10 to 300 K. We have also measured the x-ray photoemission spectra in the Yb 4d core state region. A comparison of experimental results of YbInCu₄ with those of YbCdCu₄ and YbMgCu₄ is fruitful to reveal the electronic structure peculiar to YbInCu₄, and furthermore is expected to provide a clue to understand the mechanism of the valence transition of YbInCu₄.

Valence electrons of X elements contribute to E_F of YbXCu₄ compounds and are expected to play an important role in determining a wide variety of their physical properties since their crystal structures are of the same C15b type. Here, nominal electron configurations of the In and Cd elements in solids are (4d)¹⁰(5sp)³ and (4d)¹⁰(5sp)², respectively. On the other hand, the Mg element has the $(3sp)^2$ configuration. Comparisons of electronic structure of YbInCu₄ with that of YbCdCu₄ and YbMgCu₄ would provide information on how the number of electrons of the (5sp) orbitals and the principal quantum number *n* of the (*nsp*) orbitals of the X elements affect their physical properties⁷.

YbCdCu₄ and YbMgCu₄ have been studied less so far. Hiraoka *et al* [19, 20] performed the ¹¹³Cd NMR and ⁶³Cu NQR experiments on YbCdCu₄ and concluded that the Yb 4f states changes gradually from the Fermi liquid to localized states from low to high temperature. The magnetic field rather sensitively influences the Fermi liquid state in YbCdCu₄. The Kondo temperatures T_K of YbCdCu₄ and YbMgCu₄ are estimated to be ~220 and ~850 K, respectively, from the magnetic susceptibility experiments [1].

2. Experimental details

Angle-integrated high-resolution photoemission experiments for YbXCu₄ (X = In, Cd, Mg) were carried out using a hemispherical analyser (Gammadata-Scienta ESCA-200) with an energy resolution below 5 meV. As excitation photon sources, we used an He I resonance line ($h\nu = 21.22$ eV) from an intense He discharge lamp (Gammadata-Scienta VUV-5010) for valence-band photoemission experiments and a monochromatized Al K α line $(h\nu = 1486.6 \text{ eV})$ from an x-ray tube for the Yb 4d photoemission spectra. The temperature of the sample was controlled between 10 and 300 K using a flow-through cryostat with liquid helium and a heater attached to the sample holder. The clean surfaces of samples were obtained *in situ* by scraping with a diamond file every ~ 30 min in the analysis chamber with a base pressure of $\sim 3 \times 10^{-10}$ Torr. Within 30 min no change of the spectra was observed. As for YbInCu₄, the photoemission spectra for the sample surfaces prepared by scraping and cleavage are compared in [12]. The temperature dependence of the spectra is the same for cleaved and scraped sample surfaces, though the Yb $4f_{7/2}$ peak intensity is slightly weaker for the scraped surface. In this paper, we limit the discussion to the temperature dependence and X dependence of the photoemission spectra^{8,9}. Binding energy of the photoemission spectra is defined with respect to E_F of respective samples, which was determined from the Fermi edge of Au films evaporated directly onto the sample surfaces just after the measurements.

YbInCu₄ and YbCdCu₄ samples used for the present experiments were single crystals prepared by the flux growth method similar to that described by Sarrao *et al* [5]. The constituent elements with stoichiometric ratios in InCu or CdCu fluxes were put in an alumina crucible and sealed in an evacuated quartz ampoule. The sample was then heated to 1100 °C and cooled slowly to 800 °C. After keeping at 800 °C for 20 h, the flux was removed. YbMgCu₄ samples were polycrystals. An appropriate amount of the elements was melted in the arc-furnace. After the reaction, the product in the quartz ampoule was annealed at 600 °C for two weeks. The crystal structures of all samples were confirmed to be the C15b type by x-ray powder diffraction. As for YbInCu₄, the temperature width of the valence transition at $T_v = 42$ K was below 2 K from the measurements of the magnetic susceptibility.

 $^{^7}$ YbAlCu₄ and YbGaCu₄, where the Al and Ga elements in solids have the $(3sp)^3$ and $(4sp)^3$ configurations, respectively, have a hexagonal structure.

⁸ Photoemission experiments for the cleaved surfaces and bulk-sensitive photoemission experiments using excitation photon energy below 10 eV are in progress.

⁹ Also for YbCdCu₄, we assume no difference in temperature dependence between the surface preparations by scraping and cleaving.

Figure 1. Valence-band photoemission spectrum of $YbInCu_4$ measured at 10 K (dots). The theoretical DOS derived from the band-structure calculation [21] and a broadened curve taking into account the experimental resolution and lifetime broadening are also shown as solid and dashed curves, respectively.

3. Results and discussion

The valence-band photoemission spectrum of YbInCu₄ measured with the He I resonance line at 10 K is shown by the dotted curve in figure 1. The density of states (DOS) derived from a band-structure calculation based on the self-consistent augmented plane wave method with the local density approximation is also shown by a solid curve [21]. A dashed curve represents a broadened DOS convoluted with the Gaussian and Lorentzian functions taking into account the experimental resolution and lifetime broadening, respectively¹⁰, for a comparison between the experiment and theory. On the basis of the band-structure calculation, the Cu 3d states contribute to the valence bands from 2 to 5 eV with the most prominent doublet structure: a main peak around 3 eV and a shoulder around 4 eV. The theoretical DOS feature reproduces well the experimental spectrum. The energy position of the Cu 3d structure in the experimental spectrum is, however, deeper than the theory by 0.6 eV. The feature of the Yb²⁺ 4f states near E_F is completely different between the experiment and theory, because the spin–orbit splitting of the Yb 4f states is eliminated in the theory. In the experimental spectrum, the Yb²⁺ 4f_{7/2} states are recognized just below E_F and the Yb²⁺ 4f_{5/2} states around 1.35 eV.

In figure 2, we compare the valence-band photoemission spectra of $YbXCu_4$ (X = In, Cd, Mg) measured at 10 K. The binding energy of the main peak due to the Cu 3d states of $YbInCu_4$ is 3.1 eV, while those of $YbCdCu_4$ and $YbMgCu_4$ are 3.0 eV. The energy difference of the Cu 3d structure is qualitatively understood by taking into account the number of valence

¹⁰ The full width at half maximum (FWHM) of the Gaussian function is assumed to be 10 meV and the binding-energy- (E_B) -dependent FWHM of the Lorentzian function to be $2\Gamma = 0.15 E_B + 0.01$ eV.

Figure 2. Valence-band photoemission spectra of YbXCu₄ (X = In, Cd, Mg) measured at 10 K. The energy position of the main peak due to the Cu 3d states shifts according to the X-element positions in the periodic table. The structure due to the Yb^{2+} 4f states is different only for YbMgCu₄.

electrons of the In, Cd and Mg elements. The Cd atom is located just on the left of the In atom in the periodic table and the Mg atom may be placed above Zn and Cd atoms. The number of valence electrons of the Cd and Mg atoms, which form the conduction bands (CBs) around E_F in the compound, is smaller than that of the In atom nominally by one per atom. On the assumption of the almost constant DOS around E_F among the three compounds, the difference of the number of valence electrons would change the E_F position within the CBs. Thus, the energies of the Cu 3d states of YbCdCu₄ and YbMgCu₄ are not so different with respect to E_F , and would be shallower in comparison with that of YbInCu₄. In fact, the Cu 3d structure in the photoemission spectra of YbAgCu₄, where the number of valence electrons of the Ag atom is again smaller than those of the Cd and Mg atoms nominally by one per atom, is located around 2.9 eV [18].

Here, we present the temperature dependence of the photoemission spectra near E_F with the peak due to the Yb²⁺ 4f_{7/2} states of YbInCu₄ and YbCdCu₄ measured from 10 to 300 K in figure 3. The spectra are normalized using intensities in the binding-energy region of 150–300 meV. Roughly speaking, the temperature dependence of the Yb²⁺ 4f_{7/2} peak of both compounds is similar. The peak intensity becomes strong and the peak energy shifts gradually toward the E_F side with decreasing temperature. The peak is hardly observed at 300 K. Similar temperature dependence has also been observed for YbAgCu₄ [18] and YbAl₃ [22]. One notices, however, some differences between the temperature dependences of the Yb²⁺ 4f_{7/2} peak of the two compounds. The Yb²⁺ 4f_{7/2} peak energies of YbInCu₄ and YbCdCu₄ at 10 K are around 50 and 30 meV, respectively. For YbCdCu₄, the peak energy shifts gradually toward the E_F side with decreasing temperature. For YbInCu₄, on the other hand, the peak energy first shifts gradually toward the E_F side from 300 to 50 K and then shifts slightly to the deeper-binding-energy side from 50 to 10 K in contrast to the results of YbCdCu₄. Furthermore, the enhancement of the peak intensity from 50 to 10 K for YbInCu₄ is much remarkable than that for YbCdCu₄.

The curve fittings of the photoemission spectra near E_F in figure 3 were carried out. A representative result is shown in figure 4 for the spectrum of YbInCu₄ at 10 K. We assume that

Figure 3. Photoemission spectra near E_F of (*a*) YbInCu₄ and (*b*) YbCdCu₄ measured at 10, 50, 100, 200 and 300 K. For both compounds, the Yb²⁺ 4f_{7/2} peak is clearly observed at 10 K. With decreasing temperature, the peak intensity increases and the peak energy shifts towards the E_F side. The amount of enhancement of the peak intensity from 50 to 10 K is far greater for YbInCu₄ than for YbCdCu₄.

the experimental spectra consist of the structures due to the Yb²⁺ 4f_{7/2} states, the CBs and the background contributions caused by secondary electrons. The asymmetric Doniach–Sunjic line shape [23] is used to represent the Yb²⁺ 4f_{7/2} feature [11,24]. The CBs are assumed to be structureless with constant DOS for all temperatures, and the Shirley method [25] is adopted to evaluate the background contribution due to secondary electrons. Finally, we convolute the summed curve with the Gaussian function to represent the experimental resolution, after taking into account the thermal broadening using the Fermi–Dirac function. The derived curves reproduce well the experimental results. For the other spectra of YbInCu₄ and also YbCdCu₄, the fitting procedure works successfully. For both compounds, values of a singularity index α decrease with decreasing temperature: $\alpha = 0.37$ (300 K) to 0.15 (10 K) for YbInCu₄ and $\alpha = 0.43$ (300 K) to 0.29 (10 K) for YbCdCu₄. Here α is proportional to the square of the phase shift for scattering of conduction electrons from the hole potential and reflects the asymmetry index of the line shape.

From the fitting procedure, we have estimated the intensity and energy position of the Yb²⁺ $4f_{7/2}$ peak in the temperature-dependent photoemission spectra near E_F . Figure 5 shows the Yb²⁺ $4f_{7/2}$ peak intensities of YbInCu₄ and YbCdCu₄ as a function of temperature, which are normalized to that at 300 K for respective samples. One notices that the peak intensity of YbCdCu₄ increases continuously with decreasing temperature down to 10 K. For YbInCu₄ from 300 to 50 K, on the other hand, the intensity also increases continuously, similar to the

Figure 4. Fitting results of the photoemission spectrum of YbInCu₄ measured at 10 K with the Yb²⁺ $4f_{7/2}$ states, structureless CBs and background (BG) due to the secondary electrons taking into account the thermal broadening. For the other spectra of YbInCu₄ and also YbCdCu₄, the fitting procedure works well successfully. (See the text.)

Figure 5. The Yb²⁺ $4f_{7/2}$ peak intensities in the photoemission spectra of (*a*) YbInCu₄ and (*b*) YbCdCu₄ as a function of temperature. The peak intensities increase with decreasing temperature. The amount of enhancement from 50 to 10 K is greater for YbInCu₄ than for YbCdCu₄.

results of YbCdCu₄, while from 50 to 10 K the intensity is significantly enhanced compared with YbCdCu₄.

Figure 6 shows the temperature dependence of the Yb²⁺ 4f_{7/2} peak energies of YbInCu₄ and YbCdCu₄ as a function of temperature. One notices again that the peak energy shifts gradually toward the E_F side from 300 to 50 K for both compounds. The temperature dependence from 50 to 10 K is, however, different between the two compounds. In the case of YbCdCu₄ the peak energy shifts monotonically toward the E_F side also down to 10 K, while in the case of YbInCu₄ the peak energy shifts to the deeper-binding-energy side, in contrast to the trend from 300 to 50 K.

Figure 6. The Yb²⁺ 4f_{7/2} peak energies in the photoemission spectra of YbInCu₄ and YbCdCu₄ as a function of temperature. The energies shift gradually toward the E_F side down to 50 K for both compounds. The temperature dependence from 50 to 10 K is different between two compounds. The peak energy at 10 K reflects T_K qualitatively.

According to the single-impurity Anderson (SIA) model, the Yb²⁺ 4f_{7/2} peak, commonly called the Kondo resonance, is placed at the binding energy of $k_B T_K$ in the photoemission spectra at T = 0 K [18, 26]. The peak energies of YbInCu₄ and YbCdCu₄ at 10 K are 46 and 31 meV, respectively, corresponding to 534 and 360 K. The deeper peak energy for YbInCu₄ is, thus, qualitatively consistent with the higher T_K -value: ~430 K for YbInCu₄ [5] and ~220 K for YbCdCu₄ [1] from the magnetic susceptibility experiments.

The remarkable enhancement of the peak intensity and the energy shift to the deeperbinding-energy side observed for YbInCu₄ from 50 to 10 K is assumed to be peculiar to this compound. These experimental results have not been observed for YbAgCu₄ [18] or YbAl₃ [22]. The remarkable enhancement of the Yb²⁺ 4f_{7/2} peak intensity indicates that the Yb²⁺ component increases due to the valence transition. The energy shift is also qualitatively understood from the change of T_K : $T_{K+} \sim 25$ K in the high-temperature region to $T_{K-} \sim 400$ K in the low-temperature region [8]. Thus the different temperature dependences for the Yb²⁺ 4f_{7/2} peak of YbInCu₄ between 50 and 10 K from those for YbCdCu₄ and YbAgCu₄ [18] would be attributed to the change of the electronic structure through the valence transition at $T_v = 42$ K.

From the change of T_K (ΔT_K) at the valence transition of YbInCu₄, one would expect an energy shift of the Yb²⁺ 4f_{7/2} peak to the deeper-binding-energy side in the low-temperature region of about $k_B\Delta T_K \sim 32$ meV with $\Delta T_K \sim 375$ K ($T_{K+} \sim 25$ K and $T_{K-} \sim 400$ K). The value of the energy shift between 10 and 50 K (figure 6) is, however, ~3 meV and is far smaller, by an order of magnitude, than the expected value. Quantitative explanations based on the SIA model should be re-examined [18, 22].

In the high-temperature region of YbInCu₄, $T_{K+} \sim 25$ K provides $k_B T_{K+} \sim 2$ meV, which might be too shallow a binding energy to detect correctly from the Yb²⁺ 4f_{7/2} peak in the photoemission spectra due to the experimental resolution and thermal effects. Also for the Yb²⁺ 4f_{5/2} peak at 1.35 eV, the photoemission spectra of YbInCu₄ in the high- and lowtemperature regions have been calculated from the Gunnarsson–Schönhammer method [13,14]. The calculated energy shift of the Yb²⁺ 4f_{5/2} peak is also ~32 meV. Figure 7 shows the

Figure 7. Photoemission spectra in the Yb²⁺ $4f_{5/2}$ peak region of YbInCu₄ measured at 10 and 50 K. The energy shift with a value of about 32 meV, derived from the calculated photoemission spectra using the Gunnarsson–Schönhammer method, has not been observed.

photoemission spectra in the Yb²⁺ $4f_{5/2}$ peak region of YbInCu₄ measured at 10 and 50 K. Although the value of the energy shift of ~32 meV is sufficiently detectable within the experimental resolution, almost no energy shift for the Yb²⁺ $4f_{5/2}$ peaks is observed, in agreement with the photoemission results by Joyce *et al* [13] and Moore *et al* [14].

Figure 8 shows the photoemission spectra of YbXCu₄ (X = In, Cd, Mg) near E_F measured at 10 K. The spectra are normalized using intensities in the binding-energy region of 300–700 meV, where we assume a dashed line between 350 and 550 meV for the spectra of YbInCu₄ and YbCdCu₄. The peak intensity of YbInCu₄ is stronger compared with that of YbCdCu₄, suggesting that the Yb atom in YbInCu₄ is more trivalent than that in YbCdCu₄ at 10 K. The Yb²⁺ 4f_{7/2} structure of YbMgCu₄ is, on the other hand, extremely broad over the top ~500 meV region compared with those of YbInCu₄ and YbCdCu₄. This indicates that the electronic structure near E_F of YbMgCu₄ is substantially different and the Yb²⁺ 4f_{7/2} states have a large dispersion due to the hybridization between the Yb²⁺ 4f and CB states.

Figure 9 shows the photoemission spectra near E_F of YbMgCu₄ measured from 10 to 300 K. Although the spectra are almost independent of temperature with respect to the broad feature of the Yb²⁺ 4f_{7/2} structure, the integrated peak intensity increases with decreasing temperature, similar to results for YbInCu₄ and YbCdCu₄. As concerns the centre of gravity of the peak, it rather shifts to the deeper-binding-energy side with decreasing temperature. The broad structure might be related to the high T_K of ~850 K [1].

Figure 8. Photoemission spectra near E_F of YbXCu₄ (X = In, Cd, Mg) measured at 10 K. Only the Yb²⁺ 4f_{7/2} structure in the spectra of YbMgCu₄ is different from those of the other two compounds. Yb²⁺ 4f_{7/2} states in YbMgCu₄ have a large dispersion.

Figure 9. Photoemission spectra near E_F of YbMgCu₄ measured from 10 to 300 K. The integrated Yb²⁺ $4f_{7/2}$ peak intensity increases with decreasing temperature.

Here we comment on the photo-ionization cross section of the Yb 4f states. At hv = 21.22 eV, the Yb 4f cross section is extremely small compared with the other states forming the CBs such as the In 5p and Yb 5d states [27]. In fact, we have measured the photoemission spectra of LuMgCu₄ with the He I resonance line (not shown here) and the corelike Lu 4f states around 6 eV have hardly been observed. Therefore, to observe the Yb 4f components clearly, we have already measured the soft x-ray photoemission spectra at hv = 800 eV for the three compounds studied here and obtained results consistent with the present paper [28].

The valence-band photoemission spectra discussed above provide information only on the Yb^{2+} states. In order to investigate the temperature dependence of the Yb^{3+} states as well as

Figure 10. X-ray photoemission spectra in the Yb 4d core state region of YbXCu₄ (X = In, Cd, Mg) measured at 10 K. The spectra of YbInCu₄ and YbCdCu₄ show both Yb²⁺- and Yb³⁺-derived structures, while that of YbMgCu₄ almost only Yb²⁺-derived structures.

the Yb²⁺ states, we have measured the x-ray photoemission spectra in the Yb 4d core state region using the Al K α line. Figure 10 shows the Yb 4d spectra of YbXCu₄ (X = In, Cd, Mg) measured at T = 10 K. The multiplet structures around 181.5, 184.5, 190.5, 198.5 and 205 eV are observed for YbInCu₄ and YbCdCu₄. As for YbMgCu₄, the peak structures around 181.5 and 190.5 eV are remarkable.

A Yb 4d spectrum of compounds with the Yb²⁺ component is composed only of two peaks due to the spin–orbit splitting of the Yb 4d states. On the other hand, in the case of compounds with the Yb³⁺ component, the Yb 4d spectrum shows multiplet structures due to the Coulomb interaction between the 4d core hole and 4f electrons. In comparison with the Yb 4d spectra of YbAs (trivalent), YbAl₃ (mixed-valent) and YbPd₃ (divalent) [29], the peaks at 181.5 and 190.5 eV are attributed to the Yb²⁺ 4d states, while those at 184.5, 190.5 and 198.5 eV to the Yb³⁺ 4d states in figure 10. The Yb 4d spectra of YbInCu₄ and YbCdCu₄ exhibit both Yb²⁺ and Yb³⁺ components and almost only two peaks for YbMgCu₄. The Yb 4d spectrum indicates that the Yb atom in YbMgCu₄ is in a nearly divalent state, though the Yb³⁺-derived structures are slightly observed. These experimental results for YbXCu₄ (X = In, Cd, Mg) with respect to the mixed divalent and trivalent states are in qualitative agreement with those of the Yb L_{III}-edge absorption experiments [1,3], although the Yb³⁺ component in YbMgCu₄ is too small in the Yb 4d spectrum compared with the Yb L_{III}-absorption experiments, where the Yb valence at ~10 K is estimated to be 2.37 [1].

Figure 11 shows a portion of the Yb²⁺- and Yb³⁺-derived peaks in the Yb 4d photoemission spectra of YbInCu₄ and YbCdCu₄ measured at 10, 50, 100, 200 and 300 K. The Yb²⁺ 4d peak intensities increase gradually, similar to the temperature dependence of the Yb²⁺ $4f_{7/2}$ peak intensity. On the other hand, the Yb³⁺ component decreases with decreasing temperature from 300 to 10 K in agreement with the increase of the Yb²⁺ component. It should be noticed that the Yb²⁺ component still exists at 300 K, which is also suggested from the Yb L_{III}-absorption experiments [3]. Although the relative component ratio of Yb²⁺/Yb³⁺ in YbInCu₄ and YbCdCu₄ compounds increases gradually with decreasing temperature, the remarkable change caused by the valence transition of YbInCu₄ is not clearly observed.

Figure 12 shows the temperature dependence of the Yb 4d spectra of YbMgCu₄ between 10 and 300 K. In contrast to the results for YbInCu₄ and YbCdCu₄, the Yb 4d photoemission

Figure 11. A portion of the Yb²⁺- and Yb³⁺-derived peaks in the Yb 4d photoemission spectra of YbXCu₄ (X = In, Cd, Mg) measured at 10, 50, 100, 200 and 300 K. With decreasing temperature, the intensity of the Yb²⁺ peaks increases gradually while that of the Yb³⁺ peaks decreases gradually.

spectra of YbMgCu₄ do not exhibit the noticeable temperature dependence. The Yb³⁺ 4d peak is, however, slightly observed at 190.5 eV in the Yb 4d spectrum at 300 K. Although the temperature dependence for YbMgCu₄ is much smaller than those for YbInCu₄ and YbCdCu₄, the gradual Yb valence change from the trivalent to divalent states with decreasing temperature is similar.

Finally, we discuss the X dependence of the electronic structure of YbXCu₄. The temperature dependence of the Yb²⁺ $4f_{7/2}$ and Yb 4d photoemission spectra of YbInCu₄ and YbCdCu₄ indicates that their electronic structure is similar. For both compounds, the amount of the Yb²⁺ component increases gradually with decreasing temperature. In addition, the valence-band photoemission spectra of YbAgCu₄ [18], where the Ag element in solids has nominally the (5sp)¹ electron configuration, exhibit the similar temperature dependence to those of YbInCu₄ and YbCdCu₄ with the (5sp)² In and (5sp)³ Cd elements, respectively.

For three compounds, the Yb²⁺ $4f_{7/2}$ states are observed as the prominent peaks in the photoemission spectra near E_F . On the other hand, the energy positions of the Yb²⁺ $4f_{7/2}$

Figure 12. Yb 4d photoemission spectra of YbMgCu₄ measured at 10 and 300 K. The spectra do not show the noticeable temperature dependence so much. The Yb³⁺-derived peak is slightly observed at 300 K.

peaks of YbInCu₄, YbCdCu₄ and YbAgCu₄ are 46 (at 10 K), 31 (at 10 K) and 22 meV (at 20 K, [18]), respectively. Although the Yb²⁺ $4f_{7/2}$ orbitals are corelike states, they hybridize slightly with the CB (c) states in YbXCu₄ compounds. Here we assume that the Yb²⁺ $4f_{7/2}$ states only in YbInCu₄ occupy a special energy position, leading a critical degree of c-f hybridization. With decreasing temperature, the degree of c-f hybridization increases due to the decrease of the lattice constant, which increases the Yb $4f^{14}$ (Yb²⁺) from Yb $4f^{13}$ (Yb³⁺) states. However, since the ionic radius of the Yb²⁺ ion is larger than that of the Yb³⁺ ion, the increase of the Yb²⁺ states competes with the decrease of the lattice constant. Therefore, at a critical temperature, the Yb²⁺ states increase suddenly with the lattice constant expansion, which would be more stable in total energy. In the case of YbCdCu₄ and YbAgCu₄, the situation of the competition between the Yb²⁺ ionic radius and the lattice constant is similar to that in the higher-temperature region of YbInCu₄ with $T_v = 42$ K still at 0 K, or the lowertemperature region still at high temperature just below the melting point. In order to confirm the above assumption, the experiments for YbSnCu₄ with the (5sp)⁴ Sn elements, which is newly grown by Hiraoka, are in progress. The Yb²⁺ 4f_{7/2} states in YbSnCu₄ would be located at deeper energy than 46 meV and the situation of the competition is similar to the opposite temperature region of YbInCu₄ to those of YbCdCu₄ and YbAgCu₄.

In the case of C15b-type YbMgCu₄ with the $(3sp)^2$ Mg element, the Yb 4f states hybridize appreciably with CB states compared with YbXCu₄ with the $(5sp)^n$ X element, probably due to the different feature of the (3sp)- and (5sp)-derived CBs. The electronic structure shows little temperature dependence and the valence transition is no longer observed. We are also scheduled to carry out the experiments for YbZnCu₄ with the $(4sp)^2$ Zn element. We assume that the (5sp) orbital, the number of electrons occupying the (5sp) orbital and c–f hybridization strength play an important role in the valence transition of YbInCu₄.

In summary, we have measured the He I high-resolution photoemission spectra of YbXCu₄ (X = In, Cd, Mg) in the wide binding energy region and near E_F from 10 to 300 K. The energy of the main peak due to the Cu 3d states is 3.1 eV for YbInCu₄ while 3.0 eV for YbCdCu₄ and YbMgCu₄. This slight difference is understood by taking into account the number of valence electrons of the In, Cd and Mg elements. The photoemission spectra of YbInCu₄ and YbCdCu₄ measured at 10 K exhibit the prominent peak due to the Yb²⁺ $4f_{7/2}$ states just below E_F . The Yb²⁺ 4f_{7/2} peak shows similar temperature dependence between YbInCu₄ and YbCdCu₄; with decreasing temperature from 300 to 50 K, the peak intensity increases and the peak energy shifts toward the E_F side. From 50 to 10 K, the temperature dependence of the Yb²⁺ $4f_{7/2}$ peak is different between the two compounds. The temperature dependence with respect to the enhancement of the peak intensity and the peak energy shift for YbCdCu₄ is monotonic down to 10 K, while in the case of YbInCu₄ the Yb²⁺ $4f_{7/2}$ peak is remarkably enhanced and the peak energy shifts slightly to the deeper-binding-energy side from 50 to 10 K. These remarkably different behaviours for YbInCu₄ would reflect the change of the valence-band electronic structure through the first-order valence transition at $T_v = 42$ K. On the other hand, the structure due to the $Yb^{2+} 4f_{7/2}$ states of $YbMgCu_4$ is broad as a result of the strong hybridization between the Yb 4f and CB states, indicating that the electronic structure of YbMgCu₄ is extremely different from the other two compounds. However, the integrated $Yb^{2+} 4f_{7/2}$ peak intensity increases with decreasing temperature, similar to the results of the two compounds. The Yb 4d photoemission spectra of YbInCu₄ and YbCdCu₄ indicate that the Yb^{2+} components increase gradually with decreasing temperature while the Yb^{3+} components decrease for both compounds. In particular, the Yb²⁺ component still exists at 300 K in YbInCu₄. The Yb atom in YbMgCu₄ is in the nearly divalent state. Although the Yb 4d spectrum of YbMgCu₄ is almost independent of temperature, the Yb³⁺-derived structure is slightly observed at 300 K.

Acknowledgments

The authors are grateful to the Cryogenic Centre, Hiroshima University, for liquid helium. This work is partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

References

- [1] Sarrao J L et al 1999 Phys. Rev. B 59 6855
- [2] Sarrao J L 1999 *Physica* B **259–61** 128
- [3] Felner I et al 1987 Phys. Rev. B 35 6956
- [4] Kojima K, Hayashi H, Minami A, Kasamatsu Y and Hihara T 1989 J. Magn. Magn. Mater. 81 267
- [5] Sarrao J L, Immer C D, Benton C L, Fisk Z, Lawrence J M, Mandrus D and Thompson J D 1996 Phys. Rev. B 54 12 207
- [6] Koskenmaki D C and Lawrence J M 1994 Handbook on the Physics and Chemistry of Rare Earths vol 19, ed K A Gschneidner, L Eyring, G H Lander and G R Choppin (Amsterdam: Elsevier) p 383
- [7] Lawrence J M, Riseborough P S and Parks R D 1981 Rep. Prog. Phys. 44 1
- [8] Lawrence J M, Osborn R, Sarrao J L and Fisk Z 1999 Phys. Rev. B 59 1134
- [9] Very recently, a new theory for the valence transition of YbIn_{1-x}Ag_xCu₄ based on the lattice Anderson model has been proposed
 - Goltsev A V and Bruls G 2001 Phys. Rev. B 63 155109
- [10] Ogawa S, Suga S, Taniguchi M, Fujisawa M, Fujimori A, Shimizu T, Yasuoka H and Yoshioka K 1988 Solid State Commun. 67 1093

- [11] Okusawa M, Weschke E, Meier R, Kaindle G, Ishii T, Sato N and Komatsubara T 1996 J. Electron. Spectrosc. Relat. Phenom. 78 139
- [12] Reinert F, Claessen R, Nicolay G, Ehm D, Hüfner S, Ellis W P, Gweon G-H, Allen J W, Kindler B and Aßmus W 1998 Phys. Rev. B 58 12 808
- [13] Joyce J J, Arko A J, Sarrao J L, Graham K S, Fisk Z and Riseborough P S 1999 Phil. Mag. B 79 1
- [14] Moore D P, Joyce J J, Arko A J, Sarrao J L, Morales L, Höchst H and Chuang Y D 2000 Phys. Rev. B 62 16 492
- [15] Joyce J J, Arko A J, Morales L A, Sarrao J L and Höchst H 2001 Phys. Rev. B 63 197101
- [16] Reinert F, Claessen R, Nicolay G, Ehm D, Hüfner S, Ellis W P, Gweon G-H, Allen J W, Kindler B and Aßmus W 2001 Phys. Rev. B 63 197102
- [17] Kang J-S, Allen J W, Rossel C, Seaman C L and Maple M B 1990 Phys. Rev. B 41 4078
- [18] Weibel P, Grioni M, Malterre D, Dardel B, Bear Y and Besnus M J 1993 Z. Phys. B 91 337
- [19] Hiraoka K, Kojima K, Hihara T and Shinohara T 1995 J. Magn. Magn. Mater. 140-4 1243
- [20] Hiraoka K, Murakami K, Tomiyoshi S, Hihara T, Shinohara T and Kojima K 2000 Physica B 281/282 173
- [21] Takegahara K and Kasuya T 1990 J. Phys. Soc. Japan 59 3299
- [22] Tjeng L H et al 1993 Phys. Rev. Lett. 71 1419
- [23] Doniach S and Sunjic M 1970 J. Phys. C: Solid State Phys. 3 285
- [24] Joyce J J, Andrews A B, Arko A J, Bartlett R J, Blyth R I R, Olson C G, Benning P J, Canfield P C and Poirier D M 1996 Phys. Rev. B 54 17 515
- [25] Shirley D A 1972 Phys. Rev. B 5 4709
- [26] Blyth R I R et al 1993 Phys. Rev. B 48 9497
- [27] Yeh J J and Lindau I 1985 At. Data Nucl. Data Tables 32 1
- [28] Sato H et al, in preparation
- [29] Chung J-S, Cho E-J and Oh S-J 1990 Phys. Rev. B 41 5524